Evaluating the Effectiveness of Conservation Voltage Reduction with Multilevel Robust Regression

نویسندگان

  • Jinhui Yang
  • Nanpeng Yu
  • Weixin Yao
  • Larry Juang
  • Raymond Johnson
چکیده

Abstract—Conservation voltage reduction (CVR) can effectively reduce electricity consumption and peak demand by keeping the customer voltages in the lower half of the permissible range. To facilitate widespread adoption of CVR, a reliable and robust CVR performance evaluation methodology is in critical need. However, it is difficult to accurately estimate the load reduction impact of CVR in practice. The data quality issues in supervisory control and data acquisition and advanced metering infrastructure make it challenging to distinguish a few percentage of load reduction from measurement errors and bad data. This paper develops a multilevel robust regression model within the framework of statistical experimental design to address the data quality issues. The proposed model is capable of providing robust and reliable estimates of load and voltage reduction from CVR at both distribution feeder and substation levels. The effectiveness of the proposed methodology is validated with field CVR demonstration data provided by a major California electric utility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction the Number of Power Electronic Devices of a Cascaded Multilevel Inverter Based on New General Topology

In this paper, a new cascaded multilevel inverter by capability of increasing the number of output voltage levels with reduced number of power switches is proposed. The proposed topology consists of series connection of a number of proposed basic multilevel units. In order to generate all voltage levels at the output, five different algorithms are proposed to determine the magnitude of DC volta...

متن کامل

A Novel Generalized Topology for Multi-level Inverter with Switched Series-parallel DC Sources (RESEARCH NOTE)

This paper presents a novel topology of single-phase multilevel inverter for low and high power applications. It consists of polarity (Level) generation circuit and H Bridge. The proposed topology can produce higher output voltage levels by connecting dc voltage sources   in series and parallel. The proposed topology utilizes minimum number of power electronic devices which helps in reduction o...

متن کامل

A Developed Asymmetric Multilevel Inverter with Lower Number of Components

In this paper, a new configuration for symmetrical and asymmetrical multilevel inverters is proposed. In asymmetric mode, different algorithms are suggested in order to determine the magnitudes of DC voltage sources. The merit of this topology to the conventional symmetric and asymmetric inverters is verified by the provided comparisons. This topology uses a lower number of power electronic dev...

متن کامل

Two New and Novel Cascaded Multilevel Inverters with Less Number of Components Utilizing Series Submultilevel Inverters

In this paper, two new cascaded inverters are proposed, by using the series connection of new Submultilevel inverters. Each of the proposed Submultilevel inverters consists of three batteries and eight power switches. Four algorithms are presented to determine the voltages of these batteries for each of the proposed structures. In this study the comparison between the proposed structures with c...

متن کامل

Conduction and Dead-Time Voltage Drops Estimation of Asymmetric Cascaded H-Bridge Converters Utilizing Level-Shifted PWM Scheme

Linear AC power supplies can be replaced by their nonlinear switching counterparts due to the lower voltage drops and higher efficiency and power density of switching-mode inverters. Multilevel cascaded H-bridge (CHB) converters are the preferred inverter structure because of modular configuration, control, and protection. The output voltage quality in CHB converters depends on the number of ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018